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Abstract— In this paper, we present a novel coarse-to-fine vi-
sual localization approach: Contextual Visual Localization. This
approach relies on three elements: (i) A minimal-complexity
classifier for performing fast coarse localization (submap clas-
sification); (ii) An optimized saliency detector which exploits the
visual statistics of the submap; and (iii) A fast view-matching
algorithm which filters initial matchings with a structural
criterion. The latter algorithm yields fine localization. Our
experiments show that these elements have been successfully
integrated for solving the global localization problem. Context,
that is, the awareness of being in a particular submap, is
defined by a supervised classifier tuned for a minimal set of
features. Visual context is exploited both for tuning (optimizing)
the saliency detection process, and to select potential matching
views in the visual database, close enough to the query view.

I. INTRODUCTION

Once Simultaneous Localization and Mapping (SLAM)

algorithms have learned maps of the environment, visual

information is key for endowing autonomous robots with

the ability of exploiting successfully such maps. This task

implies solving other problems like: (i) Finding the position

of the robot in the map (global localization)[1][2][3][4]

[5][6]; (ii) Tracking the position of the robot over time, for

instance to supervise a given trajectory (pose maintenance,

servoing)[8]; and (iii) Exploring a sequence of landmarks

for returning to a given position (homing) [9]. In this paper,

we focus on the global localization (robot kidnapping) prob-

lem, although some of our contributed techniques may be

used for solving pose maintenance, homing, or even SLAM

subproblems like loop-closing [10].

Recent methods for visual localization, closely related to

object recognition approaches following the constellation

paradigm [11][12][13], share two features. Firstly, these

algorithms rely on computing a set of features invariant under

scale, motion and illumination, in order to index the images

(an early attempt is presented in [14]). And secondly, they

tend to adopt a coarse-to-fine approach, in order to minimize

the number of hits to the visual databases. For instance,

in [1], the localization process is accelerated by building a

visual vocabulary from clustering invariant features. Such

vocabulary is the basis of an inverted index (accounting for
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occurrences of elements of the vocabulary in the image)

which yields coarse localization. Finally, fine localization,

among the five best candidates of coarse localization, re-

lies on the number of matched descriptors. A subsequent

verification stage exploits epipolar geometry for removing

ambiguities (this is the main difference with respect to the

approach presented here). In [3], which evolves from [4], the

visual vocabulary is replaced by a selection of feature points

in terms of their information content; localization relies on

matching feature descriptors and a HMM is introduced in

order to account for neighborhood relations between views.

In [2], the initial matching is filtered by estimating, as in

[1], the epipolar geometry through a RANSAC algorithm.

RANSAC is used for global localization in [5], when 3D data

is available. The problem of learning a set of features for pose

estimation has been investigated in [18], and the problem

of selecting the minimal set of features for navigation is

tackled in [19]. Finally, a method for reducing the number

of images in the data set with the minimal loss of information

is proposed in [20].

Considering the latter state-of-the-art approaches to visual

localization, there are few attempts of exploiting image

statistics derived from filters outputs (some of them with

invariant properties) in order to speed-up localization (that is,

to implement coarse localization). Early attempts [6] exploit

multidimensional histograms but there are few later efforts

addressed to find the minimal-complexity classifier, that is,

the classifier exploiting a minimal number of filters while

yielding the minimal error. More recently [7] boosting has

been exploited to build strong classifiers with range data.

In addition, when computing the fine localization through

filtering an initial matching, epipolar geometry is a useful

constraint but, due to the high percentage of outliers expected

(≈ 50%) an intense sampling effort is expected when

RANSAC is applied. Although it is possible to exploit the

statistics of inliers and outliers to reduce the complexity of

the process, as it is done in [2], other approaches relying on

structural filtering are useful in this fine-matching stage.

Regarding the scale-invariant detectors and features, the

SIFT detector [21] is the usual choice in most of the

latter works. Recent performance studies [22][23] shows that

these features are well behaved in terms of distinctiveness,

robustness, and detectability. Another interesting contribution

derived from [22] is a discriminant classifier to select well

behaved features. Another detector is the Kadir-Brady one

[24], which is invariant to planar rotation, scaling, intensity
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shift, and translation. Such detector has been used, in com-

bination with SIFT and the MSER detector, to detect loop-

closing during SLAM [27]. Affine-invariant detectors, like

the Harris-affine[28], are also used in robotics [10] (for a

comparison between affine methods see [26]).

Scale-invariant and affine-invariant detectors are good in-

sofar they provide a wide-baseline stability. However, their

application usually introduces a computational bottleneck

in between the coarse and fine localization stages. Thus,

reducing such overload is a challenging question. In this

paper, we propose, and successfully test, a methodology

for increasing the performance of invariant detectors. This

methodology is interesting in the sense that such increasing

of performance actually depends on the visual statistics of

views associated to each submap.

We finish this section with an overview of the method

(and of our contributions). Our first contribution is to design

a minimal-complexity classifier (Section II) for performing

coarse localization with low error. The second contribution

is a method, relying on Bayesian learning, for optimizing

the Kadir saliency detector by exploiting the visual statistics

of each submap (Section III). Given the SIFT descriptors

associated to the resulting Kadir points, we perform a fast

matching free of structural noise (Section IV) which is

our third contribution. Comparative results between coarse

and fine localization are showed in Section V. Finally, our

conclusions and future work are summarized in Section VI.

II. SUBMAP CLASSIFICATION

The 3D+2D map is derived from a long trajectory of

6DOF poses captured by a color stereo camera carried by a

person traversing different sub-maps learned through Entropy

Minimization SLAM [15][16][17], each one indexing a 3D

point cloud and a color view. Given this huge map and a

query view, such view must be properly and fast classified

as belonging to one of the submaps. The total path length was

209m, which gives a rough idea of the map scale. The path

starts at our lab, follows different corridors, goes downstairs

to the hall, reaches the building entrance and turns right to-

wards a trees avenue. In this work, we have considered Nc =
6 connected submaps (see Fig. 1): office, corridor#1,

corridor#2, hall, entrance, and trees-avenue,

denoted also as C#1 to C#6 respectively. The first four are

indoor (the hall is donwstairs) and the last two are outdoor.

A. Supervised Learning

For each query view IQ to be classified, we will use a set

of filters to extract the minimal number of low-level features

provided that they yield the desired performance. Many of

these features are invariant to illumination changes, whereas

others are not so invariant but very informative.

1) Extraction of Low-level Features: The initial filter

set is given by: (i) The Nitzberg-Harris corner detector,

which is derived from the matrix Nσ(x) = G(x;σ) ∗
{~∇I(x;σ)}{~∇I(x;σ)}T ; (ii) Canny filter edge detector out-

put C(I(x)) computed from |~∇σI(x)| = |~∇G(x, σ)∗I(x)|;

TABLE I

K-NN VS SVM CONFUSION MATRIX

C#1 C#2 C#3 C#4 C#5 C#6

C#1 26 0 0 0 0 0

C#2 2/3 63/56 1/4 0/3 0 0

C#3 0 1/0 74/67 1/9 0 0

C#4 4/12 5/6 10/0 96/95 0/2 0

C#5 0 0 0 0 81 0

C#6 0 0 0 0 30/23 78/85

(iii) Gradient magnitude itself |~∇σI(x)|; (iv) Horizontal gra-

dient ∇σ,xI(x); (v) Vertical gradient ∇σ,yI(x); (vi) Twelve

hue color θ(x) delta filters derived from sub-sampling the

hue angular and ciclic domain [0, 2π] in twelve intervals

[θi, θi+1]) and placing a Gaussian in their mid points, that

is, Hi(x) = G(ηi − θ(x);σ), being ηi = (θi+1 − θi)/2;

and (vii) the stereo-based relative depth Z(x) = fT/d(x),
being f the focus, and T the baseline, when disparity d is

available. In the latter cases where σ is specified, a single

scale was used in this work.

From the outputs of the latter filters we retain Nf = 18
histograms corresponding to: Cornerness N2, which is the

second eigenvector of N, Canny-derived edge magnitude C,

raw edge magnitude |~∇|, horizontal gradient ~∇x, vertical

gradient ~∇y , color Hi, and depth Z. Given Nb number of

bins for each histogram, the maximum number of features

is Fmax = Nf × Nb. Considering both the efficiency

and the performance of the subsequent feature selection

process, Nb must be kept as small as possible. Furthermore,

independently of the Nb, initial experiments showed that

cornerness and Canny magnitude where not informative for

our map, and thus, they are not considered in this paper (then

Nf = 16).

2) SVM/K-NN Classifier: The feature selection process

relies on estimating the averaged classification error for a

given feature subset. As the classes (sets of views of each

submap) are chosen by hand (supervised learning) we have

tested both K-NN classifiers and SVMs. K-NN classification

works well for Nv = 721 images because lazy learners

(which need to keep all examples in memory) are adequate

when the amount of data is not too large. In these conditions,

we found that after optimal feature selection, K-NNs (with

optimal neighborhood K = 1, experimentally found) slightly

outperform SVMs 88.55 vs 86.86% of correctly classified

instances, yield better a Kappa statistic (0.8602 vs 0.8393)

and smaller root relative squared error (52.4% vs 84.5%).

Furthermore Table I, shows that K-NNs and SVMs have yield

similar classification results (in this latter tables, cells with

unique values show the coincidences). However, although

SVMs scale better when more complex maps are considered,

in this work we will build and K-NN classifiers for two main

reasons: (i) Lower-error achieved with them, and (ii) NNs are

useful in order to complement the fine-localization step.
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Fig. 1. 3D+2D map learned through Entropy Minimization SLAM, showing representative views of each submap.

Fig. 2. Some selected filters. From Top-bottom and left-rigth: input image

I , depth Z, vertical gradient ~∇y , gradient magnitude |~∇|, and the color
filters: H1 to H5. Filters H8 to H10 were also selected but not showed
because they yield null output for the input image.
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Fig. 3. Classification tuning. Left: Finding the optimal number of bins Nb.
Right: Evolution of the CV error for different number of classes Nc.

B. Selection of Low-level Features

Instead of performing an exhaustive/combinatorial search,

which is unpractical unless a small Fmax is considered, we

will wrap the 1-NN classifier in a greedy algorithm.

1) Greedy Wrapping: Let V = {v1, . . .vM} be the set

of input feature vectors, with dimension Fmax, associated to

the training images, F the set of pending (to be selected)

features, and let S the set of selected ones. Initially |F| =
Fmax and |S| = 0. At each iteration of the algorithm, we

pick up all f ∈ F and evaluate them. In order to do so, we

first select, for each f and from the vi, with i = 1, . . . ,M ,

the components in S∪{f} and build a new training set Wf =
{w1, . . . ,wM}. For each of the |F| training sets, each one

with a different feature included, we perform 10−fold cross

validation (10-FCV) and obtain an averaged error Ēf over

all partition trainings and testings. The feature f∗ selected

in this iteration is the one which, in combination with the

features yet in S, minimizes that error. Then, f∗ is removed

from F , and included in S, and a new iteration begins. After

Fmax iterations, the feature set F gets empty and we register

the minimal cross-validation error Ēmin.

2) Selection Experiments: In order to evaluate the latter

algorithm, firstly we have studied the relation between the

10-FCV error and the number of classes Nc. A high Nc is

desirable in order to minimize the number of database hits

needed for fine localization. In Fig. 3(left) we show, for a

fixed Nb = 4, that the error curve for Nc = 8 diverges

from the one for Nc = 6 when more than 30 features are
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selected, whereas it converges to the Nc = 4 error curve in

these situations. This indicates that a good trade-off between

efficiency and classification error is to set Nc = 6 which is

consistent with our perceptual partition showed in Fig. 1.

On the other hand, Fig. 3(right) shows that the optimal

Nb for Nc = 6 classes is Nb = 4 which is consistent

with early experiments [29] showing also that this optimality

is more and more consistent when the number of classes

increases and thus the performance of the classifier decays.

Consequently, in this work we set Fmax = 68, whereas

the minimal number of found features was Fmin = 17.

Furthermore, the impact of not using Z (for instance in low-

cost devices) is a reduction of ≈ 4% of the classification

performance. Thus, we will use 3D information in the coarse

localization.

III. OPTIMIZED SALIENCY DETECTION

As we have seen, one of the benefits of submap classifica-

tion is to provide a coarse localization which allows to speed-

up the subsequent fine localization. As in this work such fine

localization relies on a fast structural matching between the

salient features of both the query IQ and stored IS
i images,

it should be desirable to speed-up, as much as possible, the

saliency-detection process. Considering the Kadir detector,

we exploit the statistics from each submap to predict, with

high probability, what pixels should not be explored during

the scale-space analysis. Consequently, such analysis may be

focused on promising pixels.

A. Optimized Kadir Detector

The optimized Kadir detector relies on finding, for each

environment, a threshold γ ∈ [0, 1] for discarding pixels with

not-enough relative entropy to the one at σmax, the maximal

scale.

1) Entropy Analysis through Scale Space: The Kadir

detector assumes that visual saliency may be measured by

the evolution of local complexity (entropy) along scales

σ or radii of pixels in the neighborhood (isotropic case).

More precisely, salient points x have associated a peak

of entropy H(x, σ) along the scale-space, and a non-zero

weight W (x;σ) depending on the divergence between the

respective intensity distributions (histograms) at scales σ
and σ − 1. Our analysis of H reveals that entropy changes

smoothly along the scale space, despite the existence of

local maxima. In addition, our experiments considering 240
randomly selected images of the Visual Geometry Group

database 1 (we created a test set of 240, 000 points, 10, 000
per image) show that Θ(x) = H(x;σmax)/Hmax, being

Hmax = maxx{H(x, σmax)}, helps to determine whether

pixel x will belong to the set of salient ones or not. The

higher the latter ratio (entropy ratio) the more salient the

pixel will be along the scale space. Filtering pixels with not

high enough entropy is consistent with the idea of discarding

almost homogeneous regions at σmax, but finding a proper

threshold γ may be an image-dependent task, unless the

1http://www.robots.ox.ac.uk/ vgg/

statistics of the views of each submap are exploited, and

this may be done through Bayesian learning.

2) Bayesian Optimization of the Kadir Detector: Let

Pon(Θ), and Poff (Θ) be respectively the distributions

(learned offline) associated to the probability of being on and

off the set of salient points, defined over all ratios Θ ∈ [0, 1]
with respect to Hmax. Following the same methodology used

in statistical edge detection [31], here we exploit the Chernoff

Information [30]

C(Pon, Poff ) = − min
0≤λ≤1

{log(
J∑

j=1

Pλ
on(yj)P

1−λ
off (yj))}

, where the yj represent the histogram bins and J their num-

ber. Chernoff Information (CI) measures how discriminable

are both distributions, that is, how hard is to find an adequate

threshold γ. For a given γ, we will discard x for scale-

space analysis when log Pon(Θ)
Poff (Θ) < γ. The error rate for

the latter test decays exponentially: exp{−C(Pon, Poff )}.

Furthermore, the range of valid values for a given γ is

−D(Poff ||Pon) < γ < D(Pon||Poff ), being for instance

D(Pon||Poff ) =
∑J

j=1 Pon(yj) log
Pon(yj)
Poff (yj)

the Kullback-

Leibler divergence. Any value in the latter interval is a valid

threshold, but selecting a γ value close to the lower bound

results in a convervative filter which yields a good trade-off

between low-error rate and high efficiency (more pruning).

Efficiency may increase by increasing also γ, but error rate

may also increase depending on CI, and small CI implies

narrow intervals for γ.

B. Saliency Experiments

The latter considerations apply when trying to learn Pon,

Poff for the complete map, which results in a too low CI

(0.3201). This result suggested us to learn a different pair of

distributions for each submap. Early experiments with the 12
categories of the Visual Geometry Group database yielded

CIs from 0.1446 (camel) to 0.4728 (airplanes), per-

centages of filtered pixels from 13.31% (camel) to 35.98%
(cars) depending on the γ threshold fixed. In the latter

cases, the associated percentages of saved processing time

range from 7.33% to 21.08%. Consequently, we exploited

visual context to optimize the saliency detector for the visual

localization problem. In Table II, we show: the CIs for each

submap, the conservative γ ≈ −D(Poff ||Pon), in order

to keep the disparities with respect the Kadir detector in

the range of 0.2 to 4 incorrect features on average, the

higher bound Don−off = D(Pon||Poff ), and the averaged

percentage of filtered points in each category.

IV. FAST VIEW MATCHING

The last step of the coarse-to-fine process presented in this

paper is the matching between the query image IQ and stored

ones IS
i in order to retrieve the most probable pose of the

observer in the map. In this regard, we embed the comparison

of SIFT descriptors associated to the salient points in a

matching process which seeks for structural compatibility

by iteratively discarding structural outliers and finding a
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Fig. 4. Examples of pixel filtering (in red) for increasing values of γ. In both cases, the second column is the value selected in the localization experiments.

TABLE II

OPTIMIZED SALIENCY DETECTION

Environment CI γ Don−off %Points

office 0.8977 −9.4877 2.8305 38.51%
corridor#1 0.2482 −2.8053 1.3356 44.57%
corridor#2 0.6518 −7.4953 1.9878 60.22%

hall 0.5694 −7.4915 1.5468 44.07%
entrance 0.2859 −3.9325 0.9072 26.61%

trees-avenue 0.8543 −8.6893 3.4891 44.47%

consensus graph provided that such subgraph exists. 3D

information is used only as a feature in coarse localization

but not in fine localization.

A. One-to-one Image Matching

Given IQ and IS , let LQ = {si} and LS = {sj} be

their respective sets of salient points. Firstly, we consider

their SIFT descriptors D and for each si we match it with

sj when Dij = arg minsj∈LS
{||Di − Dj ||}, and

Dij

D
ij(2)

≤

τ , being Dij(2) the Euclidean distance to sj(2) the second

best match for si, and τ ∈ [0, 1] a distinctivity threshold

usually set as τ = 0.8. Consequently, we obtain a set of

N matchings M = {(i, j)}, and we denote by L̂Q and L̂S

the sets resulting from filtering, in the original ones, features

without a matching in the M set.

B. Transformational Graph Matching

Given IQ, let GQ = (VQ,EQ) be its median K-NN graph

computed as follows. The vertices VQ = {s1, . . . , sN} are

given by the positions of the N salient pixels si ∈ L̂Q. A

non-directed edge (i, k) exists when sk ∈ L̂Q is one of the

K = 4 closest neighbors of si and also ||si − sk|| ≤ η,

being η = β × med(l,m)∈VQ×VQ
{||sl − sm||} proportional

to the median of all distances between pairs of vertices in

VQ. Such thresholding filters structural deformations due to

outlying salient points (a good balanced value is β = 2 or

simply β = 1).

The graph GQ, which is not necessarily connected, has

associated an N ×N adjacency matrix Qik where Qik = 1
when (i, k) ∈ EQ and Qik = 0 otherwise. Similarly, the

graph GS = (VS ,ES) for a stored view IS is build on-line

(graphs are never stored, only images are stored) and has an

adjacency matrix Sjl, also of dimension N × N because of

the one-to-one initial matching M. Transformational Graph

Matching (TGM) relies on the hypothesis that outlying

matchings in M (typically with a percentage greater that

50%) may be removed, with high probability, by iteratively

applying a simple structural criterion. Thus, TGM iterates:

(i) Selecting an outlying matching; (ii) Removing matched

features corresponding to the outlying matching, as well as

this matching itself; (iii) Recomputing both median K-NN

graphs. Structural disparity is approximated by computing

the residual adjacency matrix Rij = |Qij − Sij | and

selecting column j∗ = arg maxj=1...N{
∑N

i=1 Rij}, that is,

the one yielding the maximal number of different edges in

both graphs. The selected structural outliers are the features

forming the pair (i, j∗), that is, we remove si from L̂Q,

sj∗ from L̂S , and (i, j∗) from M. Then, after decrementing

N , a new iteration begins, and new median K-NN graphs

are computed from the surviving vertices. The algorithm

stops when it reaches the null residual matrix: when Rij =
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0, ∀i, j. Thus, the algorithmg seeks for finding a consensus

subgraph, and returns the number of vertices of this graph.

Considering that the bottleneck of the algorithm is the re-

computation of the graphs, which takes O(N2 log N) (the

same as computing the median at the beginning of the

algorithm) and also that the maximum number of iterations is

N , the worst case complexity is O(N3 log N). However, the

recomputation of the median graphs may be avoided by using

data structures related to incoming and outcoming edges. In

this latter case the overall computing time is nearly constant

for all the interations.

C. Matching Experiments

We have tested the matching algorithm with several ex-

ample image pairs before performing the fine-localization

experiments. Early experiments with matching pairs asso-

ciated to indoor images showed a 0% of errors vs the

60% of errors obtained when using a standard polynomial-

cost graph-matching algorithm like Softassign [32] or its

kernelized version, developed by some of the authors of

this paper [33] in order to make Softassign more robust

against structural outliers. Furthermore, the computational

cost of TGM is 2-to-3 orders of magnitude lower than

Softassign (it is usually bounded by 10−2 seconds when

typically 50 matchings are considered). In Fig. 5 we show

two representative examples of matchings before and after

applying TGM. In the following section we will give more

details about the performance in fine localization.

V. GLOBAL LOCALIZATION EXPERIMENTS

A. Coarse and Fine Localization

Contextual visual localization implies: (i) Supervised

learning of the minimal-complexity classifier; (ii) Optimizing

the saliency detector by exploiting statistics of each image

class; and (iii) Exploiting the classifier to extract from the

visual database (stored views) a set of P nearest neighbors

(NNs) of the query (test) image and apply the fast matching

algorithm for finding which of these P views is more con-

sistent with the query image. Consistency is measured both

in terms of similarity between local features and structural

compatibility.

B. The Usefulness of Fine Localization

Is our contextual approach truly effective for global local-

ization? The answer depends on the minimal number of P >
1 needed for escaping from the coarse localization results

given by the case P = 1. In Fig. 6 (left) we show the global

localization results for the test trajectory with Nt = 472
views vs Nv = 721. Such test trajectory may be considered

a ground truth trajectory in terms of 6DOF positions but not

in visual terms: although it was taken in similar illumination

conditions to the stored one, there were dynamical events

(people walking) not appearing in the stored trajectory and

the temporal resolution of both sequences was also different.

Both trajectories start at the small office (NW in the map) and

finish at the trees avenues. We have not investigated the effect

of closing-the-loop in this paper, but the success of this latter

task depends highly on the view matching algorithm which

supports a high number of mismatches. On the other hand,

The pair of views in Fig. 6(left) shows that the features do not

capture the differences between images of C#1 and C#3.

However, the second pair shows a back jump from C#6 and

C#5 because these classes are difficult to discriminate.

On the other hand, when we combine the classifier yield-

ing the P = 20 NNs with the optimized saliency detection

and the fast matching algorithm, we find that many of the

latter jumps are deleted. The averaged classification time per

image was 200 ms including feature extraction and finding

10 NNs; the averaged time for saliency detection depends

on the environment but it is in the range 1 to 2 seconds,

and the matching takes also 200 ms. The complexity is

still dominated by saliency detection, although a significant

reduction is achieved (the non-filtering range was 4 to 8
seconds, and after optimization we filter, from 38% to 60%
of pixels). A lower choice of the number of NNs, for

instance P = 5 or P = 10, does not improve significantly

the performance yielded by coarse localization, so, in our

system, the minimal helpful P is 20 NNs.

The latter results may be better visualized in Fig. 7, where

we represent the indexes of the stored images vs the indexes

of the test ones (confusion trajectories). Peaks in the trajecto-

ries represent jumps in the matching sequences. In the coarse

case, showed in Fig. 7 (left), the confusion trajectory is very

peaked even within the same environment, that is, far from

the transition phases (changes of submap). However, after

contextual localization, the trajectory is smoothed except at

transition phases. Although no information about temporal

context is exploited in this work, our results are comparable

to those obtained in [3], where HMMs are used for that

purpose. In addition, our test is very significant considering

the large number of views tested: in [3] and in [1] less than

200 views are considered. In this work we consider 472 test

images and 721 stored views.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, we present a novel method for visual

localization. This method relies on three elements: (i) A

minimal-complexity classifier for performing coarse local-

ization; (ii) An optimized saliency detector; and (iii) A fast
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Fig. 5. Matching experiments. Left: Initial and final matchings between test image #2 test image and #45 stored image. Right: Matchings between
#305 test image and #513 stored image.

Fig. 6. Localization results. Left: Coarse localization using only the classifier. Right: Coarse-to-fine localization integrating classification retaining 20-NNs
and fine fast matching. When a diagonal exists it means a confusion of 6DOF position. We show the images yielding such confusion. Sometimes they are
very similar in terms of appearance.
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Fig. 7. Confusion trajectories for the coarse localization (left) and the
integrated coarse-to-fine localization (right) after retaining 20-NNs.

view matching algorithm. These are our three contributions.

Our experimental results show that the combination of these

elements (contextual visual localization) is effective for solv-

ing the global localization problem with visual information.

Some of the elements contributed may be exploited for

solving SLAM tasks.

We have presented both representative experiments illus-

trating how each isolated element works, as well as global

experiments showing the conditions in which the coarse-to-

fine approach is truly useful. We have used a large number

of views and we have not yet considered temporal context.

B. Future Works

This work complements our previous work in the SLAM

context in the general 6DOF case but it can be extended in

many ways. Our ultimate goal is to build a wearable device

with mapping, localization, and navigation capabilities, in

order to help blind or visually-impaired people or to be inte-

grated in a patrolling mobile robot. Other related tasks like

homing and pose maintenance are of interest. Finally, each of

the contributions (minimal-complexity classifier, optimized
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saliency detector and fast matching) may be improved, and

temporal context will be included in a near future.

In addition, when large environments are considered K-

NNs make our solution not scalable. Thus, an additional

refinement, before relying on 20 NNs, is needed. For in-

stance, we are learning indexes based on prototypical graphs

(structures) for reducing the number of comparisons and

improving the scalability of the method.
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[16] J.M. Sáez, A. Hogue, F. Escolano, M. Jenkin, ”Underwater 3D SLAM
through Entropy Minimization”, in IEEE Conference on Robotics and

Automation, Orlando, FL, 2006, pp. 3562-3567
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